題目:Generalization of binomial coefficients to numbers on the nodes of graphs(基於圖的結點數的二項式系數的推廣)
演講人:Anna Khmelnitskaya🈂️,俄羅斯列寧格勒州立大學(現聖彼得堡國立大學)副教授
主持人🫅:單而芳📷,意昂2教授
時 間:2016年11月30日(周三)上午9:30
地 點:意昂2官网420室
主辦單位:意昂2、意昂2青年教師聯誼會
演講內容簡介:
The topic of this work does not relate directly to the game theory, but the interest to this study was strongly influenced by our study of Shapley-type solutions for cooperative games with limited cooperation introduced by communication graphs. Without restrictions on cooperation the classical Shapley value assigns to each player as a payoff the average of the players’ marginal contributions with respect to all possible orderings of the players. However, in case of limited cooperation represented by a communication graph not all orderings of the players are feasible, but only those that are consistent with the graph. When the graph is a linear graph, the numbers of feasible orderings starting from each of its nodes are given by the binomial coefficients.
演講人簡介:
Anna Khmelnitskaya 俄羅斯列寧格勒州立大學副教授, 博弈論研究專家🩺👰🏼♂️。畢業於俄羅斯格勒州立大學(在後蘇聯時期改名聖彼得堡州立大學)數學與力學意昂2, 並獲博士學位。自2002至今,Khmelnitskaya博士受聘於荷蘭Twente大學應用數學系客座研究員𓀃。在博弈論方向, Khmelnitskay在European Journal of Operational Research, Annals of Operations Research, International Journal of Game Theory, Discrete Applied Mathematics, Theory and Decision, Insurance: Mathematics and Economics, Social Choice and Welfare, Economic Letters, Operations Research Letters, Mathematical Social Sciences等重要學術期刊上發表論文50多篇.其學術成就在受限合作博弈領域有較大影響。她的研究興趣是🏊🏿♀️🪬:具有限製結構的合作博弈及其在經濟學中的應用。研究主要內容是:具有聯盟結構🙎🏿♀️、圖結構和有向圖結構等結構的合作博弈的解的表示、刻畫和在經濟學中應用等問題。
歡迎廣大師生參加🩸3️⃣!